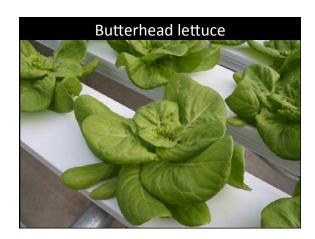
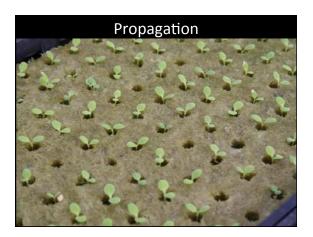


Why grow lettuce and herbs? There is an increased interest in food produced locally There are several food crops that can be grown in a greenhouse Tomatoes Cucumbers Strawberries Peppers Lettuce Herbs

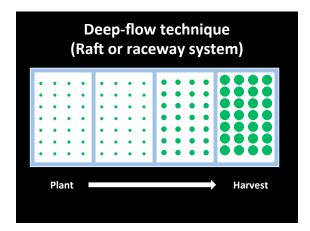

Lettuce and Herbs • Lettuce and herbs are produced for their leaves – All other crops are produced for their fruits • The time to produce is much shorter compared to fruiting crops • The short crop times allow for "gap" production – Alternatives for fall and winter production


Cultivars

- So what should you grow?
 - The stuff that sells!
- Lettuce
 - Butterhead, loose leaf, romaine
- Herbs
 - Annuals: basil, dill, cilantro, flat-leaf parsley

Propagation

- Propagation of lettuce and many herbs is with seed
 - Some herbs are propagated with cuttings
- A number of different substrates can be used
 - Rockwool
 - Phenolic foam (Oasis®)
 - Stabilized peat or coconut coir
- Seedlings can be grown on the bench or in systems



Systems

- Now that you have seedlings, what should you plant them into?
- There are a number of different hydroponic production systems
- The two that are most well-suited for lettuce and herbs (leafy crops) are:
 - 1) Nutrient-film technique
- 2) Deep-flow technique

Deep-flow technique

Advantages

- Very high planting density in raft
- · High space utilization
- If designed properly, major labor savings
- Water volume is deep (unlike NFT)
 - Pumps breaking down is less of an issue

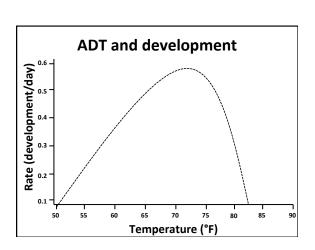
<u>Disadvantages</u>

- Oxygen levels in water decrease with time
- Air pumps must be used to increase O2 content of water
- Chilling the nutrient solution can be required during periods of warm temperatures

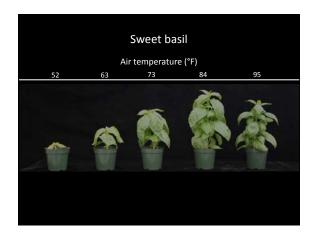
Nursery channels may be used to save on space Young plants at a high density save on space Nursery channel Finishing channel

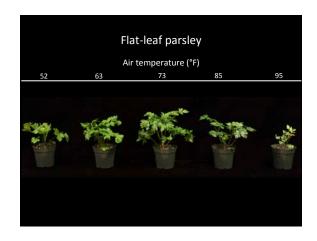
Nutrient-film technique **Disadvantages** <u>Advantages</u> The nutrient solution • The number-one has a higher oxygen problem with NFT content because it is systems = A loss of consistently moving nutrient solution delivery can result in

- Troughs can be picked up making harvesting easy
- Troughs can be stacked in more than one layer
- Clogged emitters


plant death

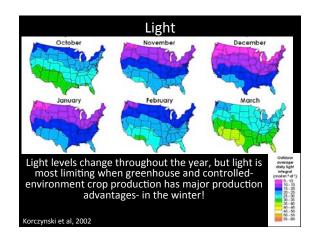
- Pump not functioning


Temperature

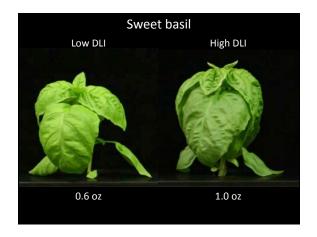

- Air temperature controls the rate of growth and development
- Managing your air temperature has a strong impact on the productivity of your crops
- Different crops have different temperature requirements

Target temperatures

- Lettuce is generally considered a "coolgrowing" crop, but air temperature that are too cool can delay maturity
 - Air temperatures from 63 to 68°F are fairly common
- The wide variety among culinary herbs makes it difficult to recommend a specific temperature



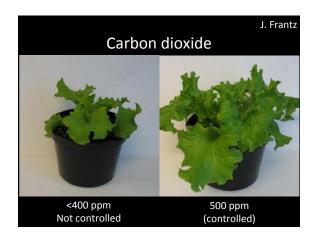
Air temperature (°F)										
46	50	54	58 62 66 70 74 78						82	86
Parsley										
Chives										
Dill										
			Mint							
			0	regar	10					
				C	ilantr	0				
						Ro	sema	ary		
			Sage							
								Basil		


Light and growth

- Light has a large impact on the growth of hydroponic lettuce and herbs
- Growth = weight = \$\$\$
- However, light can become a limiting factor during the summer production season

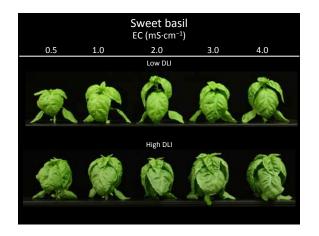
Supplemental light

- The use of supplemental electric light can help boost productivity of your lettuce and herbs
- There are several types of lights that may be used to increase light in a greenhouse
 - High-pressure sodium lamps
 - Light-emitting diodes (LEDs)



Carbon dioxide

- Carbon dioxide can be depleted in a greenhouse
- Adding supplemental ${\rm CO_2}$ can enhance the growth of hydroponic crops
 - Especially in the winter with less venting!
- CO₂ can be added in one of two ways:
 - CO₂ burners



Fertilizing Hydroponic Crops

- Hydroponically grown crops require the same macro- and micro-nutrients that containerized crops require
- In hydroponic crop production, the abundance of mineral nutrients is measured as:
 - EС
 - ppm
- A target concentration is maintained by adding stock solution

Mineral nutrients

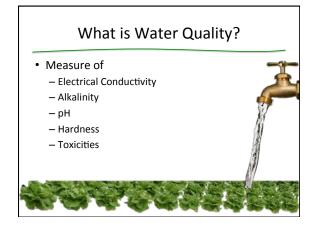
- There are three primary types of fertilizers:
 - 1- Single-bag mixes
 - 2- Two-bag mixes
 - 3- Individual element mixes

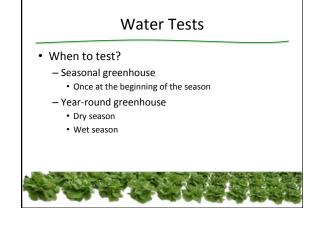
Single-bag mixes

- Single-bag mixes provide all of the required mineral nutrients on one bag
- · Very easy to use-just pick the desired concentration and measure out the required
- The ratio of elements to one another is fixed

Two-bag fertilizers

- Two-bag mixes are another popular option for fertilizers
- By using two tanks, concentrated stock solutions can be made without elements reacting and precipitating out of solution
 - "A" tank- calcium and iron
 - "B" tank- phosphates and sulfates


Individual compound fertilizers

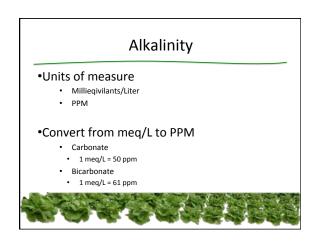

- Individual components can be used to mix fertilizers
- By using individual compounds to mix fertilizers, growers have ultimate control
- However, this can be time consuming and tedious

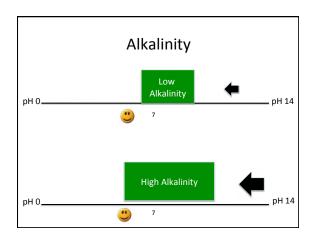
Lettuce solution						
Element	Concentration (ppm)					
Nitrogen	100-200					
Phosphorous	15-90					
Potassium	80-350					
Calcium	122-220					
Magnesium	26-96					
Boron	0.14-1.5					
Copper	0.07-0.1					
Iron	4-10					
Manganese	0.5-1.0					
Molybdenum	0.05-0.06					
Zinc	0.5-2.5					

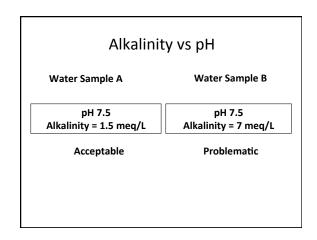
Nutrient solution EC										
0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8
Mint										
Sweet basil										
Parsley										
		Dill								
	Sage									
	C			ilantr	О					
					O	oal				
					ba	sil				
							Rosemary			

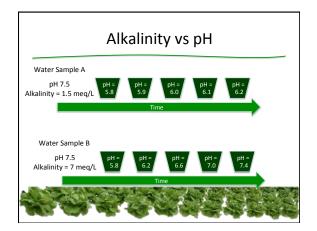
EST	RESULTS	NORMAL RANGE
Soluble Salts ms/cm EC	0.05*	0.30 - 1.00
PH	7.84	0.00 - 0.00
ALK ppm CaC03	23.03	0.00 - 0.00
Calcium ppm Ca	9.57*	40.00 - 75.00
Magnosium ppm Mg	0.87*	30.00 - 50.00
Sodium ppm Na	3.78	0.00 - 50.00
Chloride ppm CI	20.73	0.00 - 70.00
Boron ppm B	0	0.00 - 0.50
ron ppm Fe	0	0.00 - 2.00
Manganese ppm Mn	0	0.00 - 1.50
Sulfur ppm S	1.19*	10.00 - 80.00
Copper ppm Cu	0	0.00 - 0.20
Zinc ppm Zn	0	0.00 - 0.40
Molybdenum ppm Mo	0	0.00 - 0.20
Aluminum ppm Al	0	0.00 - 1.00
Nitrate ppm NO3-N	0	0.00 - 10.00
Ammorium ppm NH4-N	0.3	0.00 - 10.00
N ppm Urea	0	0.00 - 10.00
Total Nitrogen ppm TN	0.3	0.00 - 0.00
Phosphorus ppm P	0.65	0.00 - 10.00
Potassium pom K	2.17	0.00 - 10.00

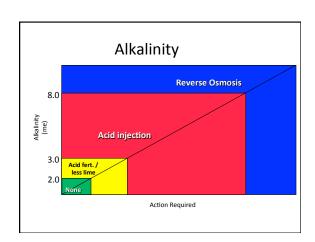
Electrical Conductivity • Measure of soluble salts • Units = mho/cm or mS/cm • Critical limit -0.3 – 1.0 mS/cm • High soluble salts can cause - Wilting - Root tip dieback - Leaf necrosis Electrical Conductivity Some species can tolerate very high EC levels and we may purposely elevate the E.C

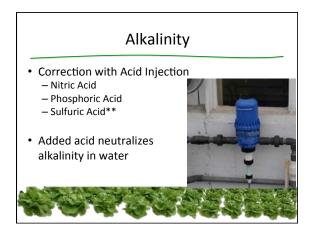


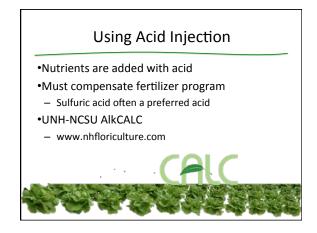

pH pH is the measure of H+ ions in a solution pH 0-7 = acidic pH 7-14 = basic (alkaline) pH effects nutrient availability in the soil solution

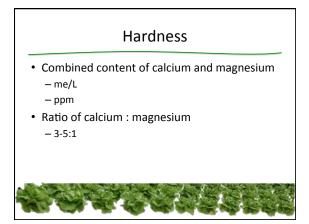

• Alkalinity – the buffering capacity of water to resist change in pH • Carbonate • CO₃-2 • Bicarbonate • HCO₃-

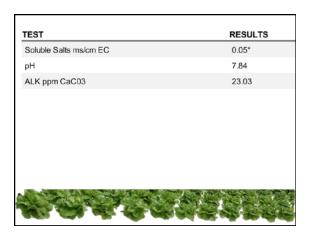


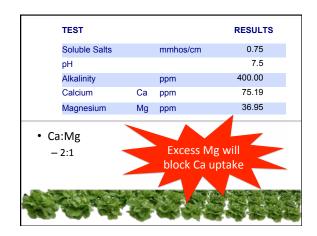


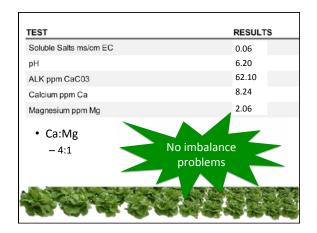












TEST	RESULTS
Soluble Salts ms/cm EC	0.05*
pH	7.84
ALK ppm CaC03	23.03
Calcium ppm Ca	9.57*
Magnesium ppm Mg	0.87*
• Ca:Mg	
9	ess Ca will
block	Mg uptake
が記録を	

Sodium

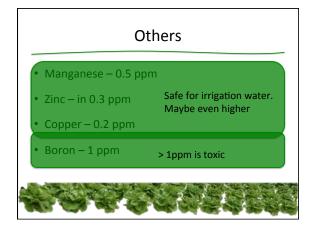
- Critical limit = 50 ppm
- · Will increase the E.C. of water
- · High levels can inhibit uptake of:
 - Potassium
 - Ammonium
 - Calcium

Chlorine

- Chlorine Cl
- Chloride Cl⁻
- Critical limit 0.4 ppm
- Root-tip burn
- · Chlorine reacts with organic matter to convert to
- Aerating or carbon filter will usually remove chlorine

Iron

- Critical limit 4 ppm
- As little as 0.5 ppm can cause staining due to iron bacteria
- Bacteria can plug equipment



Fluoride

- Added to many municipal water supplies
 - 0.5 1 ppm
 - Critical limit 0.5 ppm
- Many lily species and foliage species are sensitive to fluoride

Greens Production

- Why (or why not) to grow in the winter?
- How is winter growing different
- · Special considerations for winter
 - Dealing with snow
 - Crop scheduling and management
 - Harvesting
 - Ect.

Greens Production

- · Year-round income is nice
- Gaining value from vacant space is nice

But....it's challenging

- Planning winter crops in July, August & Sept
- Dealing with harvest logistics in snow and cold
- · Not having a 'Down time"

Food Safety

- · Need to rethink our pest management methods
 - Products for ornamentals may not be registered for edibles
 - Fundamental difference from transplants

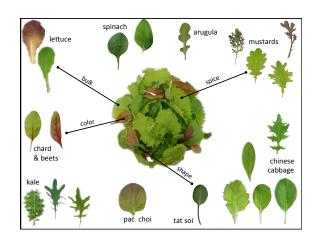
Food Safety

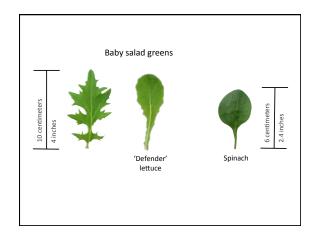
- FSMA (Food Safety and Modernization Act)
 - Passed in 2011
 - Rules and regulations are in draft form and will go into affect Fall of 2015
 - 1-6 years to come into compliance

FSMA – Food Safety

- Food based illnesses
 - You are liable have liability insurance
- Talk to your local extension, and regulation folks

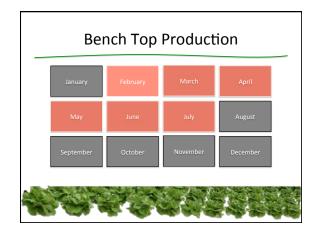
FSMA – Food Safety

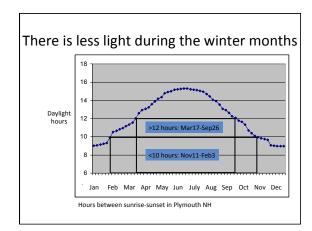

- Keep good records of sales!
- · You may not be covered by FSMA
 - -<\$25,000 in sales of produce
 - -<\$500,000 in food and ½ is direct marketed

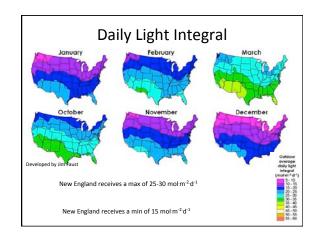


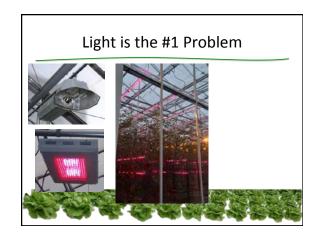
Be prepared.

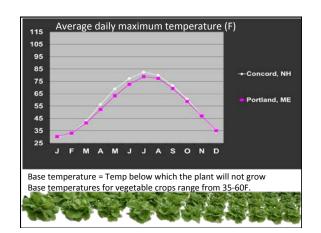
- give snow a place to go
- have 4x4 braces to support bows
- use a broom or mop during snow fall
- heat, if possible, to melt snow
- as a last resort, cut plastic

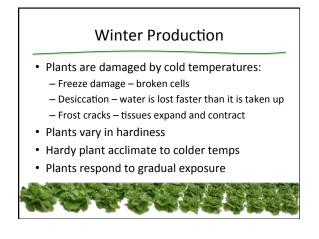


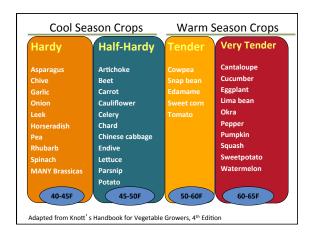











Light is the #1 Problem • How much light is needed — Lettuce needs a minimum of 12 to 14 mol·m·2·d·1 • Greenhouse will reduce the DLI by 40% (6 mols in Dec) • High-pressure sodium lights (1,200 fc) — Lights need to be on 7 to 14 hr/day

