

What is an organic fertilizer?

A fertilizer that is derived from animal or vegetable matter, or from naturally occurring minerals

Examples:

- manure
- blood meal
- worm castings
- seaweed
- hydrolyzed fish
- rock phosphate
- limestone

Some organic fertilizer sources

Pre-plant

- Rock phosphate (P)
- Limestone (Ca)
- Dolomitic limestone (Ca, Mg)

- Blood meal (12.5-1.5-0.6)
- Alfalfa meal (2.5-0.5-2.0)
- Bone meal (4-12-0, plus 20% Ca)
- Poultry litter (ex: Perdue 3-2-3, 7-2-2)
- Guano (ex: 10-10-0)

Some organic fertilizer sources

Liquids (applied with irrigation water)

- Fish emulsion (ex: 4-1-1)
- Fish hydrolysate (ex: 3-3-1)
- Seed oil extract (ex: 3-1-1)
- Compost tea

Some of the pre-plant sources noted in the previous slide can be finely ground and suspended in water

• May plug injectors, drip emitters

NOP Standards allow up to 20% of nitrogen from sodium nitrate

Immediately-available and slow-release components

Conventional

- ex. 20-10-20 soluble feed
- Nutrients readily absorbed by plant roots
- ex. Osmocote 15-9-12
- Prill coatings can be compromised at high production temperatures

Organic

- For many, initial charge may release → high EC
- Release nutrients slowly through decomposition and microbial activity
- Microbe-mediated, so temperature, pH, and other factors influences

Organic / Bioorganic Fertilizers Pre-Plant in Root Media

Pre-plant incorporation into root media

Verdanta EcoVita 10-10

Raw Organic Materials

- Feather meal (e.g. 13-0.6-0.2) •
- Blood meal (e.g. 14.4-0.6-0.2)
- Bone meal (e.g. 6.4-14.5-1.2)

3-0.6-0.2) • Hydrolyzed feather meal, 4-0.6-0.2) fermented sugar beet

fermented sugar beet molasses, bone meal, soybean meal, cocoa shell meal

Engineered Organic Fertilizers

Anaerobically composted turkey litter

er sustate

Combination Organic-Mineral Fertilizers

Examples

- Verdanta GM-2 (7-6-12 + 2.3% Mg)
 - Hoof & Horn Meal, Fermented Sugar Beet Molasses, Sugar Cane Molasses, Monoammonium Phosphate, Potassium Nitrate, Poultry Manure, Soybean Meal, Cocoa Shell Meal, Urea, Dicalcium Phosphate, & Magnesium Oxide

- Sustane 16-4-8 (120 and 180 day release products)
 - Aerobically composted turkey litter; polymer-coated (Sumicoat) urea, KNO₃, NH₄H₂PO₄; feather meal; sulfate of potash
- Nature's Source 10-4-3 Professional Plant Food
 - Oilseed extract & inorganic nutrient salts

Combination Organic-Mineral Fertilizers

- Base fertilizer component is organically derived, but mineral fertilizers are added to enrich the nutrient content
- Why?
 - Environmental benefits of using organic derived components (ex. Keeps by-products out of wastestreams)
 - Can be more cost effective than solely organic
 - Organic-derived materials promote beneficial microbes
 - Blended nutrient release combination of readilyavailable and slowly-available nutrient release that may reduce nutrient leaching

Conditions that favor microbial activity hasten nutrient release from organic fertilizers

Microbial activity favored by:

- Source of inoculum (compost or commercial products)
- Food source (compost or other bacteria)
- · Warm temperatures
- Substrate that is not water-logged
- pH not too low (greater than 5.5)

Difficulties with organic fertilizers

- · Initial high EC
- Slow nutrient release
- Managing pH of the substrate
- Providing comparable levels of nutrients as conventional fertilizers, especially late in the production of heavy feeding crops
- · Cost?
- · Ratio of nutrients supplied
- · Micronutrient supply

Bottom Line

- Though there are potential benefits of using organics, we have not yet found an organic fertilizer that offers the same amount of control and flexibility as conventional fertilizers
- We will give examples of how challenges of using organic fertilizers can be managed by adjusting production systems, including using combinations of products & approaches

What does this mean when making the switch?

 Start by evaluating all aspects of nutrient management--water quality, root medium, and fertilizer program—to ensure that all essential nutrients are provided in appropriate amounts

Fertilization

What does this mean when making the switch?

- Be prepared to more intensively manage the fertilization program over the course of the production cycle
- pH, EC, ion-specific measurements
- Produce small runs of several cultivars and have current practice as control

What does this mean when making the switch?

- No question, challenges can be overcome to produce healthy, vigorous plants
- Examples from our research of ways to help mitigate or navigate the challenges associated with organic nutrient sources

Length of Cropping Cycle

- Making the switch is easier for short-term crops
- Get an estimate of the fertilizer's release period from the manufacturer
- Pre-plant incorporation works well for many short turn crops (ex. 4 weeks)
- Plan to supplement nutrients for longer-term crops

Length of Cropping Cycle

- Plan to supplement nutrients for longer-term crops
 - Top-dressing
 - Liquid-feed
- Get an estimate of the fertilizer's release period from the manufacturer

Know general amount of quicklyavailable plant nutrients **Problem: Initial EC too high** when incorporated at high rates to meet crop nutrient needs for entire production cycle Pre-plant EC from 1 week after potting Pour Thru (dS/m) (units dS/m): − Low: < 2.0 • Feather Meal: 4.5 − Normal: 2.0 − 3.5 Blood Meal: ~4.0 - High: > 3.5

Solution: Combine organic + inorganic slow-release

- Minimize initial high EC from large doses of some organic sources
- Abate 'dumping' of nutrients from encapsulated prills if high temperatures occur during production
- Provide both ammonium and nitrate N forms
- Help establish diverse and healthy microbial communities in substrate

Honing in on Recipes and Rates

- Conduct your own small-scale trials
- Routine monitoring of pH, EC, shoot and root quality and development

Comparing substrate incorporated fertilizer sources

• Materials vary based on % N-P-K and release period

N-P-K	Release period
7-5-10	75-100 d
7-7-2	unknown
8-4-4	45 d
12-7-18	60-90 d
	7-5-10 7-7-2 8-4-4

Comparing substrate incorporated fertilizer sources

- Comparison on a lbs. Nitrogen per cubic yard
- Application rates medium 0.42 lbs. N / yd³

Treatment	Application rate	
Clear water	-	
Jack's 21-5-20	150 ppm N, weekdays	
Osmocote Bloom 12-7-18	3.5 lbs. /cubic yard	
EcoVita 7-5-10	6.0 lbs. /cubic yard	
MicroStart 60 plus 7-7-2	6.0 lbs. /cubic yard	
Sustane 8-4-4	5.25 lbs. /cubic yard	

Comparing Vermicompost Sources for Tomato Transplant Production

Dr. Neil Mattson Stephanie Beeks

Comparing Vermicomposts as the sole fertilizer source

- Vital Earth- Mega Worm
- Vermi Technology-Black Castings (OMRI)
- Terra Vesco- Sonoma Valley Worm Farm (OMRI)
- Worm Power (OMRI)
- 75 :25 Peat perlite base substrate
- Vermicompost added to displace peat at 0, 2.5, 5, 10, 20% v/v
- Seedling germination and 4-inch containers
 - 'Celebrity' tomato
 - Lady Bell' pepper

Nutri	ent Co	mparis	son
(dry	, weigh	nt basi	s)
	Vital	Vormi	Tor

Parameter	Units	Vital Earth	Vermi Technology	Terra Vesco	Worm Power
рН	std	4.1	7.4	7.6	7.1
Soluble Salts	mmhos/cm	2.2	1.8	9.0	16.2
Nitrogen (total)	%	1.50	1.10	2.50	3.90
Phosphorous	%	0.17	0.18	0.97	1.45
Potassium	%	0.09	0.10	2.07	3.09
Ammonium N	mg/kg	5.0	<4.9	<5.0	132
Nitrate N	mg/kg	590	504	2,378	4,896
Nitrate N					

Conclusions – VC comparison

- The dairy-solids based VCs were suitable as primary fertilizer source for tomatoes/pepper
- To achieve suitable size:
- 2.5-5% Worm Power
- 10-20% Terra Vesco
- Black Castings and Mega Worm VC were not suitable as a fertilizer source for tomatoes and peppers
 - Are suitable as a substrate amendment
- Selection of VC source has a great effect on suitability for germination and transplant use

Combining Sustane 8-4-4 with liquid feed

- Tomatoes in 4-inch containers, 5 weeks
- Fertility
 - Sustane 8-4-4 @ 8 lbs/yd3
 - Liquid fertilizer @ 100 ppm N 3x/week
 - Both

EcoVita and Liquid Feed

- Spring bedding plants and vegetable transplants – 6 week crops
- Constant liquid feed vs.
- Base feed: EcoVita 7-5-10 incorporated at 4 lbs/yd³, supplemented with
 - 20-10-20 at 200 ppm N 1x/week; or
 - PL-2 2-0-6 (liquid organic) at 200 ppm N 1x/week

Summary of What Works

- · Many different approaches work!
- Need to consider the system as a whole
 How does crop period match nutrient availability?
- Many organic growers begin with substrate incorporated as the base feed and amend from there
- Conventional growers may see benefits, too
 - Organic granular as an controlled release alternative
 - Combo organic/mineral to increase microbial activity and reduce nutrient leaching

